Ceneca82 Software Design Web Syndication

Software Design Design is not coding, coding is not design. Even when detailed procedural designs are created for program components, the level of abstraction of the design model is higher than source code. The only design decisions made at the coding level address the small implementation details that enable the procedural design to be coded.

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (January 2013)
Software development process
Coding Shots Annual Plan high res-5.jpg
A software developer at work
Software Design Core activities

I Supporting disciplines

II Project management

III GUI Designer Principles
Software design is both a process and a model. The design process is a sequence of steps that enable the designer to describe all aspects of the software to be built. It is important to note, however, that the design process is not simply a cookbook. Creative skill, past experience, a sense of what makes “good” software, and an overall commitment to quality are critical success factors for a competent design. The design model is the equivalent of an architect’s plans for a house. It begins by representing the totality of the thing to be built (e.g., a three-dimensional rendering of the house) and slowly refines the thing to provide guidance for constructing each detail (e.g., the plumbing layout). Similarly, the design model that is created for soft- ware provides a variety of different views of the computer software. Basic design principles enable the software engineer to navigate the design process. Davis DAV95 suggests a set1 of principles for software design, which have been adapted and extended in typescript.

Software design is the process by which an agent creates a specification of software artifacts, intended to accomplish goals, using a set of primitive components and subject to constraints.1 Software design may refer to either "all the activities involved in conceptualizing, framing, implementing, commissioning, and ultimately modifying complex systems" or "the activity following requirements specification and before programming,as in a stylized software engineering process."
oth low-level component and algorithm design and high-level, architecture design.

Design Principles Overview

Software design is the process of implementing software solutions to one or more set of problems. One of the important parts of software design is the software requirements analysis (SRA). It is a part of the software development process that lists specifications used in software engineering. If the software is "semi-automated" or user centered, software design may involve user experience design yielding a story board to help determine those specifications. If the software is completely automated (meaning no user or user interface), a software design may be as simple as a flow chart or text describing a planned sequence of events. There are also semi-standard methods like Unified Modeling Language and Fundamental modeling concepts. In either case, some documentation of the plan is usually the product of the design. Furthermore, a software design may be platform-independent or platform-specific, depending on the availability of the technology used for the design.

Software design can be considered as creating a solution to a problem in hand with available capabilities. The main difference between Software analysis and design is that the output of a software analysis consist of smaller problems to solve. Also, the analysis should not be very different even if it is designed by different team members or groups. The design focuses on the capabilities, and there can be multiple designs for the same problem depending on the environment that solution will be hosted. They can be operations systems, webpages, mobile or even the new cloud computing paradigm. Sometimes the design depends on the environment that it was developed, whether if it is created from with reliable frameworks or implemented with suitable design patterns.

When designing software, two important factors to consider are its security and usability.
Software Design
Design Principles

The Software design is able to operate with other products that are designed for interoperability with another product. For example, a piece of software may be backward-compatible with an older version of itself.
Usability & Reusability -The resulting software design comprises well defined, independent components. That leads to better maintainability. The components could be then implemented and tested in isolation before being integrated to form a desired software system. This allows division of work in a software development project.
The software design is able to perform a required function under stated conditions for a specified period of time.
The software design is able to add further features and modification with slight or no modification.
The software design is able to operate under stress or tolerate unpredictable or invalid input. For example, it can be designed with a resilience to low memory conditions.
The software design is able to withstand hostile acts and influences.
The software design user interface must be usable for its target user/audience. Default values for the parameters must be chosen so that they are a good choice for the majority of the users.
The software design performs its tasks within a user-acceptable time. The software does not consume too much memory.
The usability of the same software design is in different environments.
The software design adapts well to increasing data or number of developers.

Design Concepts

The design concepts provide the software designer with a foundation from which more sophisticated methods can be applied. A set of fundamental design concepts has evolved. They are:
There are many aspects to consider in the design of a piece of software. The importance of each should reflect the goals the software is trying to achieve. Some of these aspects are:
Abstraction - Abstraction is the process or result of generalization by reducing the information content of a concept or an observable phenomenon, typically in order to retain only information which is relevant for a particular purpose.
Refinement - It is the process of elaboration. A hierarchy is developed by decomposing a macroscopic statement of function in a step-wise fashion until programming language statements are reached. In each step, one or several instructions of a given program are decomposed into more detailed instructions. Abstraction and Refinement are complementary concepts.
Modularity - Software architecture is divided into components called modules.
Software Architecture - It refers to the overall structure of the software and the ways in which that structure provides conceptual integrity for a system. A good software architecture will yield a good return on investment with respect to the desired outcome of the project, e.g. in terms of performance, quality, schedule and cost.
Control Hierarchy - A program structure that represents the organization of a program component and implies a hierarchy of control.
Structural Partitioning - The program structure can be divided both horizontally and vertically. Horizontal partitions define separate branches of modular hierarchy for each major program function. Vertical partitioning suggests that control and work should be distributed top down in the program structure.
Data Structure - It is a representation of the logical relationship among individual elements of data.
Software Procedure - It focuses on the processing of each modules individually
Information Hiding - Modules should be specified and designed so that information contained within a module is inaccessible to other modules that have no need for such information

Modeling language

A modeling language is any artificial language that can be used to express information or knowledge or systems in a structure that is defined by a consistent set of rules. The rules are used for interpretation of the meaning of components in the structure. A modeling language can be graphical or textual. Examples of graphical modeling languages for software design are:

Business Process Modeling Notation (BPMN) is an example of a Process Modeling language.
EXPRESS and EXPRESS-G (ISO 10303-11) is an international standard general-purpose data modeling language.
Extended Enterprise Modeling Language (EEML) is commonly used for business process modeling across a number of layers.
Flowchart is a schematic representation of an algorithm or a step-wise process,
Fundamental Modeling Concepts (FMC) modeling language for software-intensive systems.
IDEF is a family of modeling languages, the most notable of which include IDEF0 for functional modeling, IDEF1X for information modeling, and IDEF5 for modeling ontologies.
Jackson Structured Programming (JSP) is a method for structured programming based on correspondences between data stream structure and program structure
LePUS3 is an object-oriented visual Design Description Language and a formal specification language that is suitable primarily for modelling large object-oriented (Java, C++, C#) programs and design patterns.
Unified Modeling Language (UML) is a general modeling language to describe software both structurally and behaviorally. It has a graphical notation and allows for extension with a Profile (UML).
Alloy (specification language) is a general purpose specification language for expressing complex structural constraints and behavior in a software system. It provides a concise language based on first-order relational logic.
Systems Modeling Language (SysML) is a new general-purpose modeling language for systems engineering.

Design patterns

A software designer or architect may identify a design problem which has been solved by others before. A template or pattern describing a solution to a common problem is known as a design pattern. The reuse of such patterns can speed up the software development process, having been tested and proven in the past.

Software design documentation may be reviewed or presented to allow constraints, specifications and even requirements to be adjusted prior to computer programming. Redesign may occur after review of a programmed simulation or prototype. It is possible to design software in the process of programming, without a plan or requirement analysis,3 but for more complex projects this would not be considered a professional approach. A separate design prior to programming allows for multidisciplinary designers and Subject Matter Experts (SMEs) to collaborate with highly skilled programmers for software that is both useful and technically sound. Making of robots is also a huge use of software design
See also
Wikimedia Commons has media related to Software design.

Aspect-oriented software development
Bachelor of Science in Information Technology
Design rationale
Interaction design
Icon design
Search-based software engineering
Software Design Description (IEEE 1016)
Software development
User experience
User interface design
Zero One Infinity


Ralph, P. and Wand, Y. (2009). A proposal for a formal definition of the design concept. In Lyytinen, K., Loucopoulos, P., Mylopoulos, J., and Robinson, W., editors, Design Requirements Workshop (LNBIP 14), pp. 103–136. Springer-Verlag, p. 109 doi:10.1007/978-3-540-92966-6_6.
Freeman, Peter; David Hart (2004). "A Science of design for software-intensive systems". Communications of the ACM 47 (8): 19–21 20. doi:10.1145/1012037.1012054.
Ralph, P., and Wand, Y. A Proposal for a Formal Definition of the Design Concept. In, Lyytinen, K., Loucopoulos, P., Mylopoulos, J., and Robinson, W., (eds.), Design Requirements Engineering: A Ten-Year Perspective: Springer-Verlag, 2009, pp. 103-136
^Roger S. Pressman. Software engineering: a practitioner’s approach. McGraw-Hill. ISBN 0-07-365578-3.


Major fields of computer science


Software engineering

Computer occupations
Software design

TecKhan54 Software Design Web Syndication


Basa Jawa
Bahasa Melayu
Norsk bokmål
Tiếng Việt


Last edited Mar 25, 2014 at 9:12 PM by Jerusalem2020J2IL, version 3